Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-5-chloropyridinium 2-carboxyacetate

Madhukar Hemamalini and Hoong-Kun Fun*‡

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 25 May 2010; accepted 25 May 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.097; data-to-parameter ratio = 16.9.

The title salt, $C_5H_6ClN_2^+C_3H_3O_4^-$, contains two cations and two anions in the asymmetric unit. Both 2-amino-5-chloropyridinium ions are protonated at their pyridine N atoms and both hydrogen malonate ions feature an intramolecular O– $H \cdots O$ hydrogen bond, which generates an S(6) ring motif and results in a folded conformation. In the crystal structure, the cations and anions are linked *via* N– $H \cdots O$, O– $H \cdots O$ and C– $H \cdots O$ hydrogen bonds, forming chains propagating in [010], which are cross-linked by further C– $H \cdots O$ interactions.

Related literature

For background to the chemistry of substituted pyridines, see: Amr *et al.* (2006); Bart *et al.* (2001); Shinkai *et al.* (2000); Klimesôva *et al.* (1999). For related structures, see: Pourayoubi *et al.* (2007); Janczak & Perpétuo (2009); Akriche & Rzaigui (2005). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogenbond motifs, see: Bernstein *et al.* (1995). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data $C_5H_6CIN_2^+ \cdot C_3H_3O_4^ M_r = 232.62$

Monoclinic, $P2_1/c$ *a* = 15.6971 (19) Å

‡ Thomson Reuters ResearcherID: A-3561-2009.

b = 16.866 (2) Å	
c = 7.4662 (10) Å	
$\beta = 94.518 \ (3)^{\circ}$	
V = 1970.5 (4) Å ³	
Z = 8	

Data collection

Bruker APEXII DUO CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2009)	
$T_{\min} = 0.921, \ T_{\max} = 0.973$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.097$ S = 1.015811 reflections 343 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1NA \cdots O1A$	0.93 (2)	1.68 (2)	2.5982 (17)	171 (2)
$N2A - H2NA \cdots O2A$	0.95 (2)	2.01(2)	2.9518 (19)	169.1 (18)
$N2A - H3NA \cdots O3B^{i}$	0.87(2)	2.07 (2)	2.9333 (18)	178 (2)
$N1B - H1NB \cdot \cdot \cdot O1B$	0.92(2)	1.69 (2)	2.5980 (17)	169 (2)
$N2B - H2NB \cdot \cdot \cdot O2B$	0.88(2)	2.08(2)	2.9538 (19)	175 (2)
$N2B - H3NB \cdot \cdot \cdot O3A^{ii}$	0.93 (2)	2.04 (2)	2.9598 (19)	175 (2)
$O4A - H1OA \cdots O2A$	0.94(2)	1.58 (2)	2.4835 (16)	158 (2)
$O4B - H1OB \cdots O2B$	0.93 (3)	1.57 (3)	2.4752 (16)	162 (3)
$C1A - H1A \cdots O3B^{iii}$	0.960 (18)	2.458 (18)	3.374 (2)	159.6 (14)
$C1B - H1B \cdots O3A^{iii}$	0.98 (2)	2.46 (2)	3.417 (2)	166.1 (18)
$C7A - H7AB \cdots O1B^{iii}$	0.97(2)	2.31(2)	3.2509 (19)	162.6 (18)
$C7B - H7BB \cdots O4A^{iv}$	0.96 (2)	2.55 (2)	3.440 (2)	155.7 (16)
$C4A - H4A \cdots O4B^{i}$	0.95(2)	2.32(2)	3.264 (2)	171.6 (18)
$C4B - H4B \cdots O4A^{ii}$	0.94 (2)	2.30 (2)	3.237 (2)	177.4 (17)
Symmetry codes:	(i) $x + 1, -y$	$+\frac{3}{2}$, $z - \frac{1}{2}$;	(ii) $x_1 - y + \frac{3}{2}$	$z - \frac{1}{2}$; (iii)

Mo $K\alpha$ radiation $\mu = 0.38 \text{ mm}^{-1}$

 $0.22 \times 0.14 \times 0.07 \text{ mm}$

22474 measured reflections 5811 independent reflections

4314 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 100 K

 $R_{\rm int}=0.050$

refinement $\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.29$ e Å⁻³

Symmetry codes: (i) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2};$ (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2};$ (iii) -x + 1, -y + 1, -z + 2; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{5}{2}.$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5466).

References

- Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607-o2609.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). *Bioorg. Med. Chem.* 14, 5481–5488.
- Bart, A., Jansen, J., Zwan, J. V., Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem. 44, 245–249.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Janczak, J. & Perpétuo, G. J. (2009). Acta Cryst. C65, 0339-0341.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
- Klimesôva, V., Svoboda, M., Waisser, K., Pour, M. & Kaustova, J. (1999). *Il Farmaco*, **54**, 666–672.
- Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, 04631.
- Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem. 43, 4667–4677.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1496-o1497 [doi:10.1107/S1600536810019677]

2-Amino-5-chloropyridinium 2-carboxyacetate

M. Hemamalini and H.-K. Fun

Comment

Pyridine and its derivatives continue to attract great interest due to the wide variety of interesting biological activities observed for these compounds, such as anticancer, analgesic, antimicrobial, and antidepressant activities (Amr *et al.*, 2006; Bart *et al.*, 2001; Shinkai *et al.*, 2000; Klimesôva *et al.*, 1999). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi *et al.*, 2007), 2-amino-5-chloropyridinium trichloroacetate (Janczak & Perpétuo, 2009) and bis(2-amino-5-chloropyridinium)dihydrogendi phosphate (Akriche & Rzaigui, 2005) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt, (I), is presented here.

The asymmetric unit of the title salt consists of two crystallographically independent 2-amino-5-chloropyridinium cations and two hydrogen malonate anions, with atom labelling suffixes of A & B (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.002 (1) Å for C5A atom (molecule A) and 0.009 (1) Å for atom N1B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C5A [123.22 (13)°] and C1B—N1B—C5B [122.97 (14)°] angles compared to those observed in an unprotonated structure (Pourayoubi *et al.*, 2007). The bond lengths (Allen *et al.*, 1987) and angles are normal.

In the crystal structure. (Fig. 2). the ionic units are linked by N1A—H1NA····O1A; N2A—H2NA···O2A; N2A—H3NA···O3B; N1B—H1NB····O1B; N2B—H2NB····O2B; N2B—H3NB····O3A; C1A—H1A···O3B; C1B—H1B···O3A; C4A—H4A···O4B and C4B—H4B···O4A (Table 1) hydrogen bonds, forming onedimensional chains along the *b*-axis. Furthermore, these chains are inter-connected by intermolecular C7A—H7AB···O1B and C7B-H7BB···O4A hydrogen bonds. There are intramolecular O4A-H1OA···O2A and O4B-H1OB···O2B hydrogen bonds in the hydrogen malonate anions, which generate S(6) (Bernstein *et al.*, 1995) ring motifs, resulting in folded conformation.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and malonic acid acid (52 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.

Refinement

All the H atoms were located from the difference Fourier maps and allowed to refine freely [N-H = 0.87 (2)-0.95 (2) Å, O-H = 0.93 (3)-0.94 (3) Å and C-H = 0.90 (2)-0.97 (2) Å].

Figures

Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The crystal packing of (I), showing the hydrogen-bonded (dashed lines) network.

2-Amino-5-chloropyridinium 2-carboxyacetate

Crystal data

$C_5H_6CIN_2^+ \cdot C_3H_3O_4^-$	F(000) = 960
$M_r = 232.62$	$D_{\rm x} = 1.568 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3966 reflections
a = 15.6971 (19) Å	$\theta = 2.6 - 29.5^{\circ}$
b = 16.866 (2) Å	$\mu = 0.38 \text{ mm}^{-1}$
c = 7.4662 (10) Å	T = 100 K
$\beta = 94.518 \ (3)^{\circ}$	Needle, colourless
$V = 1970.5 (4) \text{ Å}^3$	$0.22\times0.14\times0.07~mm$
Z = 8	

Data collection

Bruker APEXII DUO CCD diffractometer	5811 independent reflections
Radiation source: fine-focus sealed tube	4314 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.050$
φ and ω scans	$\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -22 \rightarrow 22$
$T_{\min} = 0.921, \ T_{\max} = 0.973$	$k = -23 \rightarrow 23$
22474 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.097$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_0^2) + (0.0434P)^2 + 0.3626P]$ where $P = (F_0^2 + 2F_c^2)/3$
5811 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
343 parameters	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1A	1.10339 (2)	0.51132 (2)	0.62925 (6)	0.02059 (10)
N1A	0.96753 (8)	0.70248 (8)	0.71311 (18)	0.0154 (3)
N2A	0.98853 (9)	0.83754 (8)	0.6948 (2)	0.0201 (3)
C1A	0.99204 (10)	0.62574 (9)	0.7005 (2)	0.0158 (3)
C2A	1.07092 (10)	0.60860 (9)	0.6478 (2)	0.0161 (3)
C3A	1.12584 (10)	0.67048 (10)	0.6084 (2)	0.0185 (3)
C4A	1.10044 (10)	0.74747 (9)	0.6221 (2)	0.0183 (3)
C5A	1.01808 (10)	0.76410 (9)	0.6772 (2)	0.0153 (3)
O1A	0.80991 (7)	0.72010 (7)	0.78892 (17)	0.0217 (3)
O2A	0.82767 (7)	0.84610 (6)	0.87375 (16)	0.0188 (2)
O3A	0.59603 (7)	0.85002 (7)	1.08754 (16)	0.0210 (3)
O4A	0.71363 (7)	0.91411 (7)	1.02782 (17)	0.0202 (2)
C6A	0.78450 (10)	0.78253 (9)	0.8570 (2)	0.0152 (3)
C7A	0.69498 (10)	0.78000 (9)	0.9200 (2)	0.0150 (3)
C8A	0.66443 (10)	0.85090 (9)	1.0200 (2)	0.0156 (3)

Cl1B	0.63656 (3)	0.19876 (2)	0.73072 (6)	0.02333 (10)
N1B	0.49352 (8)	0.38598 (8)	0.80976 (18)	0.0157 (3)
N2B	0.50075 (9)	0.51989 (8)	0.7476 (2)	0.0208 (3)
C1B	0.52319 (10)	0.31042 (9)	0.8071 (2)	0.0164 (3)
C2B	0.59873 (10)	0.29500 (10)	0.7381 (2)	0.0175 (3)
C3B	0.64554 (10)	0.35768 (10)	0.6699 (2)	0.0200 (3)
C4B	0.61446 (10)	0.43307 (10)	0.6713 (2)	0.0192 (3)
C5B	0.53518 (10)	0.44787 (9)	0.7429 (2)	0.0162 (3)
O1B	0.34096 (7)	0.39509 (6)	0.92022 (17)	0.0215 (3)
O2B	0.33226 (7)	0.52644 (6)	0.89745 (17)	0.0209 (3)
O3B	0.10788 (7)	0.53283 (7)	1.13690 (18)	0.0270 (3)
O4B	0.21003 (7)	0.59797 (7)	1.01198 (17)	0.0213 (3)
C6B	0.30412 (10)	0.45958 (9)	0.9424 (2)	0.0157 (3)
C7B	0.22061 (10)	0.45532 (9)	1.0316 (2)	0.0163 (3)
C8B	0.17473 (10)	0.53207 (9)	1.0644 (2)	0.0172 (3)
H1A	0.9511 (11)	0.5865 (11)	0.730 (2)	0.016 (4)*
H1B	0.4871 (12)	0.2697 (12)	0.856 (3)	0.026 (5)*
H3A	1.1788 (13)	0.6612 (11)	0.572 (3)	0.025 (5)*
H3B	0.7003 (13)	0.3485 (11)	0.623 (3)	0.026 (5)*
H4A	1.1372 (13)	0.7899 (12)	0.597 (3)	0.028 (5)*
H4B	0.6435 (13)	0.4767 (12)	0.626 (3)	0.026 (5)*
H7AA	0.6570 (12)	0.7744 (11)	0.815 (3)	0.023 (5)*
H7AB	0.6906 (13)	0.7322 (12)	0.991 (3)	0.029 (5)*
H7BA	0.1847 (14)	0.4223 (13)	0.967 (3)	0.035 (6)*
H7BB	0.2294 (13)	0.4291 (12)	1.145 (3)	0.031 (6)*
H1NA	0.9120 (14)	0.7144 (13)	0.738 (3)	0.035 (6)*
H2NA	0.9348 (14)	0.8461 (12)	0.743 (3)	0.033 (6)*
H3NA	1.0235 (14)	0.8762 (14)	0.680 (3)	0.041 (6)*
H1NB	0.4410 (14)	0.3956 (12)	0.851 (3)	0.034 (6)*
H2NB	0.4509 (13)	0.5249 (12)	0.793 (3)	0.028 (5)*
H3NB	0.5290 (14)	0.5628 (14)	0.702 (3)	0.038 (6)*
H1OA	0.7643 (16)	0.8995 (15)	0.976 (3)	0.051 (7)*
H1OB	0.2602 (17)	0.5811 (16)	0.965 (4)	0.058 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1A	0.02137 (19)	0.01383 (18)	0.0268 (2)	0.00466 (14)	0.00314 (16)	-0.00142 (16)
N1A	0.0130 (6)	0.0137 (6)	0.0202 (7)	-0.0002 (5)	0.0045 (5)	-0.0004 (5)
N2A	0.0188 (7)	0.0131 (7)	0.0292 (8)	-0.0008 (5)	0.0074 (6)	0.0005 (6)
C1A	0.0172 (7)	0.0120 (7)	0.0182 (7)	-0.0011 (6)	0.0025 (6)	-0.0002 (6)
C2A	0.0172 (7)	0.0128 (7)	0.0182 (7)	0.0019 (5)	0.0016 (6)	-0.0007 (6)
C3A	0.0134 (7)	0.0198 (8)	0.0228 (8)	0.0008 (6)	0.0054 (6)	-0.0010 (7)
C4A	0.0161 (7)	0.0156 (7)	0.0238 (8)	-0.0030 (6)	0.0054 (6)	0.0015 (6)
C5A	0.0165 (7)	0.0147 (7)	0.0149 (7)	-0.0015 (5)	0.0018 (6)	0.0004 (6)
O1A	0.0173 (5)	0.0146 (5)	0.0346 (7)	-0.0007 (4)	0.0101 (5)	-0.0051 (5)
O2A	0.0185 (5)	0.0132 (5)	0.0255 (6)	-0.0037 (4)	0.0074 (5)	-0.0022 (5)
O3A	0.0193 (5)	0.0195 (6)	0.0250 (6)	0.0019 (4)	0.0080 (5)	-0.0011 (5)

O4A	0.0225 (6)	0.0123 (5)	0.0272 (6)	-0.0009 (4)	0.0096 (5)	-0.0026 (5)
C6A	0.0155 (7)	0.0137 (7)	0.0165 (7)	0.0004 (5)	0.0023 (6)	0.0013 (6)
C7A	0.0150 (7)	0.0122 (7)	0.0178 (7)	-0.0013 (5)	0.0023 (6)	-0.0001 (6)
C8A	0.0187 (7)	0.0128 (7)	0.0154 (7)	0.0016 (5)	0.0026 (6)	0.0025 (6)
Cl1B	0.0262 (2)	0.0190 (2)	0.0250 (2)	0.00833 (15)	0.00331 (16)	0.00035 (17)
N1B	0.0148 (6)	0.0144 (6)	0.0184 (6)	-0.0006 (5)	0.0038 (5)	0.0001 (5)
N2B	0.0198 (7)	0.0146 (7)	0.0288 (8)	-0.0001 (5)	0.0081 (6)	0.0015 (6)
C1B	0.0177 (7)	0.0140 (7)	0.0174 (7)	-0.0003 (6)	0.0011 (6)	0.0013 (6)
C2B	0.0191 (7)	0.0166 (7)	0.0164 (7)	0.0037 (6)	-0.0006 (6)	-0.0007 (6)
C3B	0.0161 (7)	0.0249 (8)	0.0195 (8)	0.0010 (6)	0.0053 (6)	-0.0024 (7)
C4B	0.0176 (7)	0.0194 (8)	0.0212 (8)	-0.0032 (6)	0.0061 (6)	-0.0009 (7)
C5B	0.0176 (7)	0.0148 (7)	0.0162 (7)	-0.0025 (6)	0.0015 (6)	-0.0010 (6)
O1B	0.0192 (5)	0.0124 (5)	0.0342 (7)	0.0012 (4)	0.0110 (5)	0.0018 (5)
O2B	0.0208 (6)	0.0119 (5)	0.0312 (7)	-0.0005 (4)	0.0094 (5)	0.0013 (5)
O3B	0.0246 (6)	0.0194 (6)	0.0392 (8)	0.0045 (5)	0.0157 (6)	0.0017 (6)
O4B	0.0199 (6)	0.0128 (5)	0.0321 (7)	0.0012 (4)	0.0082 (5)	-0.0002 (5)
C6B	0.0162 (7)	0.0137 (7)	0.0175 (7)	0.0013 (5)	0.0024 (6)	-0.0002 (6)
C7B	0.0170 (7)	0.0113 (7)	0.0212 (8)	0.0015 (5)	0.0054 (6)	0.0016 (6)
C8B	0.0178 (7)	0.0147 (7)	0.0193 (8)	0.0020 (6)	0.0016 (6)	0.0005 (6)

Geometric parameters (Å, °)

Cl1A—C2A	1.7268 (16)	Cl1B—C2B	1.7308 (16)
N1A—C5A	1.3472 (19)	N1B—C5B	1.3484 (19)
N1A—C1A	1.3557 (19)	N1B—C1B	1.358 (2)
N1A—H1NA	0.93 (2)	N1B—H1NB	0.92 (2)
N2A—C5A	1.333 (2)	N2B—C5B	1.331 (2)
N2A—H2NA	0.95 (2)	N2B—H2NB	0.88 (2)
N2A—H3NA	0.87 (2)	N2B—H3NB	0.93 (2)
C1A—C2A	1.360 (2)	C1B—C2B	1.355 (2)
C1A—H1A	0.959 (18)	C1B—H1B	0.98 (2)
C2A—C3A	1.400 (2)	C2B—C3B	1.406 (2)
C3A—C4A	1.365 (2)	C3B—C4B	1.362 (2)
СЗА—НЗА	0.91 (2)	СЗВ—НЗВ	0.96 (2)
C4A—C5A	1.415 (2)	C4B—C5B	1.415 (2)
C4A—H4A	0.95 (2)	C4B—H4B	0.94 (2)
O1A—C6A	1.2481 (18)	O1B—C6B	1.2491 (18)
O2A—C6A	1.2692 (18)	O2B—C6B	1.2660 (19)
O3A—C8A	1.2217 (19)	O3B—C8B	1.2181 (19)
O4A—C8A	1.3150 (18)	O4B—C8B	1.3153 (19)
O4A—H1OA	0.94 (3)	O4B—H1OB	0.93 (3)
C6A—C7A	1.517 (2)	C6B—C7B	1.518 (2)
C7A—C8A	1.508 (2)	C7B—C8B	1.511 (2)
С7А—Н7АА	0.95 (2)	C7B—H7BA	0.90 (2)
С7А—Н7АВ	0.97 (2)	C7B—H7BB	0.95 (2)
C5A—N1A—C1A	123.22 (13)	C5B—N1B—C1B	122.97 (14)
C5A—N1A—H1NA	116.7 (13)	C5B—N1B—H1NB	117.6 (13)
C1A—N1A—H1NA	119.8 (13)	C1B—N1B—H1NB	119.3 (13)
C5A—N2A—H2NA	120.2 (13)	C5B—N2B—H2NB	118.2 (13)

C5A—N2A—H3NA	117.3 (15)	C5B—N2B—H3NB		119.7 (14)
H2NA—N2A—H3NA	121.5 (19)	H2NB—N2B—H3NB		122.1 (19)
N1A—C1A—C2A	119.54 (14)	C2B—C1B—N1B		119.84 (15)
N1A—C1A—H1A	116.4 (11)	C2B—C1B—H1B		123.8 (12)
C2A—C1A—H1A	124.1 (11)	N1B—C1B—H1B		116.4 (12)
C1A—C2A—C3A	119.49 (14)	C1B—C2B—C3B		119.44 (15)
C1A—C2A—Cl1A	120.43 (12)	C1B—C2B—C11B		120.34 (13)
C3A—C2A—Cl1A	120.07 (12)	C3B—C2B—C11B		120.22 (12)
C4A—C3A—C2A	120.35 (14)	C4B—C3B—C2B		120.10 (15)
С4А—С3А—НЗА	117.8 (12)	С4В—С3В—Н3В		118.8 (12)
С2А—С3А—НЗА	121.9 (12)	С2В—С3В—Н3В		121.1 (12)
C3A—C4A—C5A	119.31 (14)	C3B—C4B—C5B		119.59 (15)
C3A—C4A—H4A	121.2 (12)	C3B—C4B—H4B		122.9 (12)
C5A—C4A—H4A	119.5 (12)	C5B—C4B—H4B		117.5 (12)
N2A—C5A—N1A	118.84 (14)	N2B—C5B—N1B		119.12 (14)
N2A—C5A—C4A	123.08 (14)	N2B—C5B—C4B		122.84 (15)
N1A—C5A—C4A	118.08 (14)	N1B—C5B—C4B		118.04 (14)
C8A—O4A—H1OA	106.3 (15)	C8B—O4B—H1OB		104.0 (16)
O1A—C6A—O2A	124.57 (14)	O1B—C6B—O2B		124.45 (14)
O1A—C6A—C7A	115.85 (13)	O1B—C6B—C7B		116.22 (13)
O2A—C6A—C7A	119.57 (13)	O2B—C6B—C7B		119.33 (13)
C8A—C7A—C6A	118.02 (13)	C8B—C7B—C6B		118.02 (13)
С8А—С7А—Н7АА	106.5 (12)	C8B—C7B—H7BA		109.3 (13)
С6А—С7А—Н7АА	106.5 (12)	С6В—С7В—Н7ВА		108.6 (13)
С8А—С7А—Н7АВ	110.6 (12)	C8B—C7B—H7BB		106.9 (12)
С6А—С7А—Н7АВ	107.4 (12)	C6B—C7B—H7BB		109.9 (12)
Н7АА—С7А—Н7АВ	107.4 (16)	H7BA—C7B—H7BB		103.1 (18)
O3A—C8A—O4A	121.58 (14)	O3B—C8B—O4B		121.41 (14)
O3A—C8A—C7A	121.26 (14)	O3B—C8B—C7B		121.29 (14)
O4A—C8A—C7A	117.15 (13)	O4B—C8B—C7B		117.29 (13)
C5A—N1A—C1A—C2A	-0.6(2)	C5B—N1B—C1B—C2B		14(2)
N1A—C1A—C2A—C3A	0.4 (2)	N1B-C1B-C2B-C3B		0.0 (2)
N1A—C1A—C2A—Cl1A	-179.58(12)	N1B-C1B-C2B-C11B		-179.02(12)
C1A - C2A - C3A - C4A	-0.2(3)	C1B-C2B-C3B-C4B		-0.8(3)
CI1A - C2A - C3A - C4A	179.75 (14)	Cl1B—C2B—C3B—C4B		178.16 (13)
C2A - C3A - C4A - C5A	0.2 (3)	C2B-C3B-C4B-C5B		0.4 (3)
C1A—N1A—C5A—N2A	-179.49(15)	C1B-N1B-C5B-N2B		178.66 (15)
C1A—N1A—C5A—C4A	0.6 (2)	C1B—N1B—C5B—C4B		-1.7 (2)
C3A—C4A—C5A—N2A	179.68 (17)	C3B—C4B—C5B—N2B		-179.60 (16)
C3A—C4A—C5A—N1A	-0.4 (2)	C3B-C4B-C5B-N1B		0.8 (2)
O1A—C6A—C7A—C8A	173.93 (14)	O1B—C6B—C7B—C8B		178.82 (15)
O2A—C6A—C7A—C8A	-6.9 (2)	O2B—C6B—C7B—C8B		-0.5 (2)
C6A—C7A—C8A—O3A	-173.71 (15)	C6B—C7B—C8B—O3B		-179.34 (16)
C6A—C7A—C8A—O4A	7.8 (2)	C6B—C7B—C8B—O4B		0.5 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1A—H1NA…O1A	0.93 (2)	1.68 (2)	2.5982 (17)	171 (2)

N2A—H2NA···O2A	0.95 (2)	2.01 (2)	2.9518 (19)	169.1 (18)
N2A—H3NA···O3B ⁱ	0.87 (2)	2.07 (2)	2.9333 (18)	178 (2)
N1B—H1NB…O1B	0.92 (2)	1.69 (2)	2.5980 (17)	169 (2)
N2B—H2NB···O2B	0.88 (2)	2.08 (2)	2.9538 (19)	175 (2)
N2B—H3NB···O3A ⁱⁱ	0.93 (2)	2.04 (2)	2.9598 (19)	175 (2)
O4A—H1OA···O2A	0.94 (2)	1.58 (2)	2.4835 (16)	158 (2)
O4B—H1OB···O2B	0.93 (3)	1.57 (3)	2.4752 (16)	162 (3)
C1A—H1A···O3B ⁱⁱⁱ	0.960 (18)	2.458 (18)	3.374 (2)	159.6 (14)
C1B—H1B····O3A ⁱⁱⁱ	0.98 (2)	2.46 (2)	3.417 (2)	166.1 (18)
C7A—H7AB···O1B ⁱⁱⁱ	0.97 (2)	2.31 (2)	3.2509 (19)	162.6 (18)
C7B—H7BB···O4A ^{iv}	0.96 (2)	2.55 (2)	3.440 (2)	155.7 (16)
C4A—H4A···O4B ⁱ	0.95 (2)	2.32 (2)	3.264 (2)	171.6 (18)
C4B—H4B···O4A ⁱⁱ	0.94 (2)	2.30 (2)	3.237 (2)	177.4 (17)

Symmetry codes: (i) x+1, -y+3/2, z-1/2; (ii) x, -y+3/2, z-1/2; (iii) -x+1, -y+1, -z+2; (iv) -x+1, y-1/2, -z+5/2.

